Mathematical Biology Seminar

Malaria dynamics within the mosquito

-
Speaker(s): Olivia Prosper (The University of Tennessee Knoxville, Mathematics)
The malaria parasite Plasmodium falciparum requires a vertebrate host and a female Anopheles mosquito to complete a full life cycle, with sexual reproduction occurring in the mosquito. While parasite dynamics within the vertebrate host, such as humans, has been studied using mathematical models, less is understood about dynamics within the mosquito, a critical component of malaria transmission dynamics. This sexual stage of the parasite life cycle allows for the production of genetically novel parasites. In the meantime, a mosquito's biology creates bottlenecks in the infecting parasites' development. We developed a two-stage stochastic model of the generation of parasite diversity within a mosquito and were able to demonstrate the importance of heterogeneity amongst parasite dynamics across a population of mosquitoes on estimates of parasite diversity. A key epidemiological parameter related to the timing of onward transmission from mosquito to vertebrate host is the extrinsic incubation period (EIP). Using simple models of within-mosquito parasite dynamics fitted to empirical data, we investigated factors influencing the EIP.
Email ciocanel@math.duke.edu to request the Zoom link and password for the talk (or subscribe to announcements at https://lists.duke.edu/sympa/info/mathbio-seminar).

Online