In a world of polarized opinions on many cultural issues, we propose a model for the evolution of opinions on a large complex network. Our model is akin to the popular Friedkin-Johnsen model, with the added complexity of vertex-dependent media signals and confirmation bias, both of which help explain some of the most important factors leading to polarization. The analysis of the model is done on a directed random graph, capable of replicating highly inhomogeneous real-world networks with various degrees of assortativity and community structure. Our main results give the stationary distribution of opinions on the network, including explicitly computable formulas for the conditional means and variances for the various communities. Our results span the entire range of inhomogeneous random graphs, from the sparse regime, where the expected degrees are bounded, all the way to the dense regime, where a graph having n vertices has order n^2 edges.