Regular and Singular Steady States of the 2D Incompressible Euler Equations near the Bahouri–Chemin Patch

Authors

Elgindi, TM; Huang, Y

Abstract

We consider steady states of the two-dimensional incompressible Euler equations on T2 and construct smooth and singular steady states around a particular singular steady state. More precisely, we construct families of smooth and singular steady solutions that converge to the Bahouri–Chemin patch.

Citation

Elgindi, T. M., and Y. Huang. “Regular and Singular Steady States of the 2D Incompressible Euler Equations near the Bahouri–Chemin Patch (Accepted).” Archive for Rational Mechanics and Analysis 249, no. 1 (February 1, 2025). https://doi.org/10.1007/s00205-024-02077-6.
Archive for Rational Mechanics and Analysis

Publication Links