A REGULARITY THEORY FOR STATIC SCHRÖDINGER EQUATIONS ON R d IN SPECTRAL BARRON SPACES
Authors
Chen, Z; Lu, J; Lu, Y; Zhou, S
Abstract
Spectral Barron spaces have received considerable interest recently, as it is the natural function space for approximation theory of two-layer neural networks with a dimension-free convergence rate. In this paper, we study the regularity of solutions to the whole-space static Schrödinger equation in spectral Barron spaces. We prove that if the source of the equation lies in the spectral Barron space B s(R d) and the potential function admitting a nonnegative lower bound decomposes as a positive constant plus a function in B s(R d), then the solution lies in the spectral Barron space B s+2(R d).